3.5.85 \(\int \sec (c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [485]

Optimal. Leaf size=104 \[ \frac {2 a (15 A+5 B+7 C) \tan (c+d x)}{15 d \sqrt {a+a \sec (c+d x)}}+\frac {2 (5 B-2 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 C (a+a \sec (c+d x))^{3/2} \tan (c+d x)}{5 a d} \]

[Out]

2/5*C*(a+a*sec(d*x+c))^(3/2)*tan(d*x+c)/a/d+2/15*a*(15*A+5*B+7*C)*tan(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+2/15*(5*
B-2*C)*(a+a*sec(d*x+c))^(1/2)*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]
time = 0.15, antiderivative size = 104, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.073, Rules used = {4167, 4086, 3877} \begin {gather*} \frac {2 a (15 A+5 B+7 C) \tan (c+d x)}{15 d \sqrt {a \sec (c+d x)+a}}+\frac {2 (5 B-2 C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{15 d}+\frac {2 C \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 a d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(2*a*(15*A + 5*B + 7*C)*Tan[c + d*x])/(15*d*Sqrt[a + a*Sec[c + d*x]]) + (2*(5*B - 2*C)*Sqrt[a + a*Sec[c + d*x]
]*Tan[c + d*x])/(15*d) + (2*C*(a + a*Sec[c + d*x])^(3/2)*Tan[c + d*x])/(5*a*d)

Rule 3877

Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*b*(Cot[e + f*x]/(
f*Sqrt[a + b*Csc[e + f*x]])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 4086

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(a*B*m + A*b*(m + 1))/(b
*(m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B
, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] &&  !LtQ[m, -2^(-1)]

Rule 4167

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_
.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m
 + 2))), x] + Dist[1/(b*(m + 2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*A*(m + 2) + b*C*(m + 1) + (b*
B*(m + 2) - a*C)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \sec (c+d x) \sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx &=\frac {2 C (a+a \sec (c+d x))^{3/2} \tan (c+d x)}{5 a d}+\frac {2 \int \sec (c+d x) \sqrt {a+a \sec (c+d x)} \left (\frac {1}{2} a (5 A+3 C)+\frac {1}{2} a (5 B-2 C) \sec (c+d x)\right ) \, dx}{5 a}\\ &=\frac {2 (5 B-2 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 C (a+a \sec (c+d x))^{3/2} \tan (c+d x)}{5 a d}+\frac {1}{15} (15 A+5 B+7 C) \int \sec (c+d x) \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {2 a (15 A+5 B+7 C) \tan (c+d x)}{15 d \sqrt {a+a \sec (c+d x)}}+\frac {2 (5 B-2 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 C (a+a \sec (c+d x))^{3/2} \tan (c+d x)}{5 a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.83, size = 83, normalized size = 0.80 \begin {gather*} \frac {(15 A+10 B+14 C+2 (5 B+4 C) \cos (c+d x)+(15 A+10 B+8 C) \cos (2 (c+d x))) \sec ^2(c+d x) \sqrt {a (1+\sec (c+d x))} \tan \left (\frac {1}{2} (c+d x)\right )}{15 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

((15*A + 10*B + 14*C + 2*(5*B + 4*C)*Cos[c + d*x] + (15*A + 10*B + 8*C)*Cos[2*(c + d*x)])*Sec[c + d*x]^2*Sqrt[
a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2])/(15*d)

________________________________________________________________________________________

Maple [A]
time = 13.83, size = 105, normalized size = 1.01

method result size
default \(-\frac {2 \left (-1+\cos \left (d x +c \right )\right ) \left (15 A \left (\cos ^{2}\left (d x +c \right )\right )+10 B \left (\cos ^{2}\left (d x +c \right )\right )+8 C \left (\cos ^{2}\left (d x +c \right )\right )+5 B \cos \left (d x +c \right )+4 C \cos \left (d x +c \right )+3 C \right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}}{15 d \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )}\) \(105\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/15/d*(-1+cos(d*x+c))*(15*A*cos(d*x+c)^2+10*B*cos(d*x+c)^2+8*C*cos(d*x+c)^2+5*B*cos(d*x+c)+4*C*cos(d*x+c)+3*
C)*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)/cos(d*x+c)^2/sin(d*x+c)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

2/15*(15*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(((A + 2*B)*d*cos(2*d*x + 2*
c)^2 + (A + 2*B)*d*sin(2*d*x + 2*c)^2 + 2*(A + 2*B)*d*cos(2*d*x + 2*c) + (A + 2*B)*d)*integrate((((cos(8*d*x +
 8*c)*cos(2*d*x + 2*c) + 3*cos(6*d*x + 6*c)*cos(2*d*x + 2*c) + 3*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2*d*x
 + 2*c)^2 + sin(8*d*x + 8*c)*sin(2*d*x + 2*c) + 3*sin(6*d*x + 6*c)*sin(2*d*x + 2*c) + 3*sin(4*d*x + 4*c)*sin(2
*d*x + 2*c) + sin(2*d*x + 2*c)^2)*cos(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + (cos(2*d*x + 2*c)*sin
(8*d*x + 8*c) + 3*cos(2*d*x + 2*c)*sin(6*d*x + 6*c) + 3*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) - cos(8*d*x + 8*c)*s
in(2*d*x + 2*c) - 3*cos(6*d*x + 6*c)*sin(2*d*x + 2*c) - 3*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*sin(5/2*arctan2(s
in(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - ((cos(2*d*x +
2*c)*sin(8*d*x + 8*c) + 3*cos(2*d*x + 2*c)*sin(6*d*x + 6*c) + 3*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) - cos(8*d*x
+ 8*c)*sin(2*d*x + 2*c) - 3*cos(6*d*x + 6*c)*sin(2*d*x + 2*c) - 3*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*cos(5/2*a
rctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - (cos(8*d*x + 8*c)*cos(2*d*x + 2*c) + 3*cos(6*d*x + 6*c)*cos(2*d*
x + 2*c) + 3*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + sin(8*d*x + 8*c)*sin(2*d*x + 2*c) + 3*si
n(6*d*x + 6*c)*sin(2*d*x + 2*c) + 3*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c)^2)*sin(5/2*arctan2(si
n(2*d*x + 2*c), cos(2*d*x + 2*c))))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))/(((2*(3*cos(6*d*
x + 6*c) + 3*cos(4*d*x + 4*c) + cos(2*d*x + 2*c))*cos(8*d*x + 8*c) + cos(8*d*x + 8*c)^2 + 6*(3*cos(4*d*x + 4*c
) + cos(2*d*x + 2*c))*cos(6*d*x + 6*c) + 9*cos(6*d*x + 6*c)^2 + 9*cos(4*d*x + 4*c)^2 + 6*cos(4*d*x + 4*c)*cos(
2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + 2*(3*sin(6*d*x + 6*c) + 3*sin(4*d*x + 4*c) + sin(2*d*x + 2*c))*sin(8*d*x +
 8*c) + sin(8*d*x + 8*c)^2 + 6*(3*sin(4*d*x + 4*c) + sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + 9*sin(6*d*x + 6*c)^2
 + 9*sin(4*d*x + 4*c)^2 + 6*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c)^2)*cos(1/2*arctan2(sin(2*d*x
+ 2*c), cos(2*d*x + 2*c) + 1))^2 + (2*(3*cos(6*d*x + 6*c) + 3*cos(4*d*x + 4*c) + cos(2*d*x + 2*c))*cos(8*d*x +
 8*c) + cos(8*d*x + 8*c)^2 + 6*(3*cos(4*d*x + 4*c) + cos(2*d*x + 2*c))*cos(6*d*x + 6*c) + 9*cos(6*d*x + 6*c)^2
 + 9*cos(4*d*x + 4*c)^2 + 6*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + 2*(3*sin(6*d*x + 6*c) + 3
*sin(4*d*x + 4*c) + sin(2*d*x + 2*c))*sin(8*d*x + 8*c) + sin(8*d*x + 8*c)^2 + 6*(3*sin(4*d*x + 4*c) + sin(2*d*
x + 2*c))*sin(6*d*x + 6*c) + 9*sin(6*d*x + 6*c)^2 + 9*sin(4*d*x + 4*c)^2 + 6*sin(4*d*x + 4*c)*sin(2*d*x + 2*c)
 + sin(2*d*x + 2*c)^2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2)*(cos(2*d*x + 2*c)^2 + sin(2
*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)), x) + 2*((A + B + 2*C)*d*cos(2*d*x + 2*c)^2 + (A + B + 2*C)*d*s
in(2*d*x + 2*c)^2 + 2*(A + B + 2*C)*d*cos(2*d*x + 2*c) + (A + B + 2*C)*d)*integrate((((cos(8*d*x + 8*c)*cos(2*
d*x + 2*c) + 3*cos(6*d*x + 6*c)*cos(2*d*x + 2*c) + 3*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 +
sin(8*d*x + 8*c)*sin(2*d*x + 2*c) + 3*sin(6*d*x + 6*c)*sin(2*d*x + 2*c) + 3*sin(4*d*x + 4*c)*sin(2*d*x + 2*c)
+ sin(2*d*x + 2*c)^2)*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + (cos(2*d*x + 2*c)*sin(8*d*x + 8*c
) + 3*cos(2*d*x + 2*c)*sin(6*d*x + 6*c) + 3*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) - cos(8*d*x + 8*c)*sin(2*d*x + 2
*c) - 3*cos(6*d*x + 6*c)*sin(2*d*x + 2*c) - 3*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*sin(3/2*arctan2(sin(2*d*x + 2
*c), cos(2*d*x + 2*c))))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - ((cos(2*d*x + 2*c)*sin(8*d
*x + 8*c) + 3*cos(2*d*x + 2*c)*sin(6*d*x + 6*c) + 3*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) - cos(8*d*x + 8*c)*sin(2
*d*x + 2*c) - 3*cos(6*d*x + 6*c)*sin(2*d*x + 2*c) - 3*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*cos(3/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c))) - (cos(8*d*x + 8*c)*cos(2*d*x + 2*c) + 3*cos(6*d*x + 6*c)*cos(2*d*x + 2*c) + 3
*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + sin(8*d*x + 8*c)*sin(2*d*x + 2*c) + 3*sin(6*d*x + 6*
c)*sin(2*d*x + 2*c) + 3*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c)^2)*sin(3/2*arctan2(sin(2*d*x + 2*
c), cos(2*d*x + 2*c))))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))/(((2*(3*cos(6*d*x + 6*c) + 3
*cos(4*d*x + 4*c) + cos(2*d*x + 2*c))*cos(8*d*x + 8*c) + cos(8*d*x + 8*c)^2 + 6*(3*cos(4*d*x + 4*c) + cos(2*d*
x + 2*c))*cos(6*d*x + 6*c) + 9*cos(6*d*x + 6*c)^2 + 9*cos(4*d*x + 4*c)^2 + 6*cos(4*d*x + 4*c)*cos(2*d*x + 2*c)
 + cos(2*d*x + 2*c)^2 + 2*(3*sin(6*d*x + 6*c) + 3*sin(4*d*x + 4*c) + sin(2*d*x + 2*c))*sin(8*d*x + 8*c) + sin(
8*d*x + 8*c)^2 + 6*(3*sin(4*d*x + 4*c) + sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + 9*sin(6*d*x + 6*c)^2 + 9*sin(4*d
*x + 4*c)^2 + 6*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c)^2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(
2*d*x + 2*c) + 1))^2 + (2*(3*cos(6*d*x + 6*c) + 3*cos(4*d*x + 4*c) + cos(2*d*x + 2*c))*cos(8*d*x + 8*c) + cos(
8*d*x + 8*c)^2 + 6*(3*cos(4*d*x + 4*c) + cos(2*...

________________________________________________________________________________________

Fricas [A]
time = 2.98, size = 89, normalized size = 0.86 \begin {gather*} \frac {2 \, {\left ({\left (15 \, A + 10 \, B + 8 \, C\right )} \cos \left (d x + c\right )^{2} + {\left (5 \, B + 4 \, C\right )} \cos \left (d x + c\right ) + 3 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{15 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

2/15*((15*A + 10*B + 8*C)*cos(d*x + c)^2 + (5*B + 4*C)*cos(d*x + c) + 3*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x +
 c))*sin(d*x + c)/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)*(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a*(sec(c + d*x) + 1))*(A + B*sec(c + d*x) + C*sec(c + d*x)**2)*sec(c + d*x), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 206 vs. \(2 (92) = 184\).
time = 1.07, size = 206, normalized size = 1.98 \begin {gather*} \frac {2 \, {\left ({\left (\sqrt {2} {\left (15 \, A a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 5 \, B a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 7 \, C a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 10 \, \sqrt {2} {\left (3 \, A a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 2 \, B a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + C a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 15 \, \sqrt {2} {\left (A a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + B a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + C a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{15 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

2/15*((sqrt(2)*(15*A*a^3*sgn(cos(d*x + c)) + 5*B*a^3*sgn(cos(d*x + c)) + 7*C*a^3*sgn(cos(d*x + c)))*tan(1/2*d*
x + 1/2*c)^2 - 10*sqrt(2)*(3*A*a^3*sgn(cos(d*x + c)) + 2*B*a^3*sgn(cos(d*x + c)) + C*a^3*sgn(cos(d*x + c))))*t
an(1/2*d*x + 1/2*c)^2 + 15*sqrt(2)*(A*a^3*sgn(cos(d*x + c)) + B*a^3*sgn(cos(d*x + c)) + C*a^3*sgn(cos(d*x + c)
)))*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - a)^2*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*d)

________________________________________________________________________________________

Mupad [B]
time = 6.64, size = 246, normalized size = 2.37 \begin {gather*} -\frac {2\,\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}-1\right )\,\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,\left (A\,15{}\mathrm {i}+B\,10{}\mathrm {i}+C\,8{}\mathrm {i}+A\,{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,30{}\mathrm {i}+A\,{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,15{}\mathrm {i}+B\,{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,10{}\mathrm {i}+B\,{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,20{}\mathrm {i}+B\,{\mathrm {e}}^{c\,3{}\mathrm {i}+d\,x\,3{}\mathrm {i}}\,10{}\mathrm {i}+B\,{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,10{}\mathrm {i}+C\,{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,8{}\mathrm {i}+C\,{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,28{}\mathrm {i}+C\,{\mathrm {e}}^{c\,3{}\mathrm {i}+d\,x\,3{}\mathrm {i}}\,8{}\mathrm {i}+C\,{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,8{}\mathrm {i}\right )}{15\,d\,\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + a/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/cos(c + d*x),x)

[Out]

-(2*(exp(c*1i + d*x*1i) - 1)*(a + a/(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*(A*15i + B*10i + C*
8i + A*exp(c*2i + d*x*2i)*30i + A*exp(c*4i + d*x*4i)*15i + B*exp(c*1i + d*x*1i)*10i + B*exp(c*2i + d*x*2i)*20i
 + B*exp(c*3i + d*x*3i)*10i + B*exp(c*4i + d*x*4i)*10i + C*exp(c*1i + d*x*1i)*8i + C*exp(c*2i + d*x*2i)*28i +
C*exp(c*3i + d*x*3i)*8i + C*exp(c*4i + d*x*4i)*8i))/(15*d*(exp(c*1i + d*x*1i) + 1)*(exp(c*2i + d*x*2i) + 1)^2)

________________________________________________________________________________________